Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Community-aware Network Growth Model for Synthetic Social Network Generation (1901.03629v1)

Published 11 Jan 2019 in cs.SI and physics.soc-ph

Abstract: This study proposes a novel network growth model named ComAwareNetGrowth which aims to mimic evolution of real-world social networks. The model works in discrete time. At each timestep, a new link (I) within-community or (II) anywhere in the network is created (a) between existing nodes or (b) between an existing node and a newcoming node, based on (i) random graph model, (ii) preferential attachment model, (iii) a triangle-closing model, or (iv) a quadrangle-closing model. Parameters control the probability of employing a particular mechanism in link creation. Experimental results on Karate and Caltech social networks shows that the model is able to mimic real-word social networks in terms of clustering coefficient, modularity, average path length, diameter, and power law exponent. Further experiments indicate that ComAwareNetGrowth model is able to generate variety of synthetic networks with different statistics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.