Papers
Topics
Authors
Recent
2000 character limit reached

Cocon: Computation in Contextual Type Theory

Published 10 Jan 2019 in cs.PL | (1901.03378v1)

Abstract: We describe a Martin-L\"of style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive) computations. We mediate between HOAS representations and computations using contextual modal types. Our type theory also supports an infinite hierarchy of universes and hence supports type-level computation -- thereby providing metaprogramming and (small-scale) reflection. Our main contribution is the development of a Kripke-style model for Cocon that allows us to prove normalization. From the normalization proof, we derive subject reduction and consistency. Our work lays the foundation to incorporate the methodology of logical frameworks into systems such as Agda and bridges the longstanding gap between these two worlds.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.