Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Almost Interior Points in Ordered Banach Spaces and the Long--Term Behaviour of Strongly Positive Operator Semigroups (1901.03306v3)

Published 10 Jan 2019 in math.FA

Abstract: The first part of this article is a brief survey of the properties of so-called almost interior points in ordered Banach spaces. Those vectors can be seen as a generalization of functions which are strictly positive almost everywhere'' on $L^p$-spaces and ofquasi-interior points'' in Banach lattices. In the second part we study the long--term behaviour of strongly positive operator semigroups on ordered Banach spaces; these are semigroups which, in a sense, map every non-zero positive vector to an almost interior point. Using the Jacobs--de Leeuw--Glicksberg decomposition together with the theory presented in the first part of the paper we deduce sufficiency criteria for such semigroups to converge (strongly or in operator norm) as time tends to infinity. This generalises known results for semigroups on Banach lattices as well as on normally ordered Banach spaces with unit.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.