Papers
Topics
Authors
Recent
Search
2000 character limit reached

DAHA and skein algebra on surface: double-torus knots

Published 9 Jan 2019 in math-ph, math.GT, math.MP, and math.QA | (1901.02743v1)

Abstract: We study a topological aspect of rank-1 double affine Hecke algebra (DAHA). Clarified is a relationship between the DAHA of A1-type (resp. CC1-type) and the skein algebra on a once-punctured torus (resp. a 4-punctured sphere), and the SL(2;Z) actions of DAHAs are identified with the Dehn twists on the surfaces. Combining these two types of DAHA, we construct the DAHA representation for the skein algebra on a genus-two surface, and we propose a DAHA polynomial for a double-torus knot, which is a simple closed curve on a genus two Heegaard surface in S3. Discussed is a relationship between the DAHA polynomial and the colored Jones polynomial.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.