Papers
Topics
Authors
Recent
2000 character limit reached

DSConv: Efficient Convolution Operator (1901.01928v2)

Published 7 Jan 2019 in cs.CV

Abstract: Quantization is a popular way of increasing the speed and lowering the memory usage of Convolution Neural Networks (CNNs). When labelled training data is available, network weights and activations have successfully been quantized down to 1-bit. The same cannot be said about the scenario when labelled training data is not available, e.g. when quantizing a pre-trained model, where current approaches show, at best, no loss of accuracy at 8-bit quantizations. We introduce DSConv, a flexible quantized convolution operator that replaces single-precision operations with their far less expensive integer counterparts, while maintaining the probability distributions over both the kernel weights and the outputs. We test our model as a plug-and-play replacement for standard convolution on most popular neural network architectures, ResNet, DenseNet, GoogLeNet, AlexNet and VGG-Net and demonstrate state-of-the-art results, with less than 1% loss of accuracy, without retraining, using only 4-bit quantization. We also show how a distillation-based adaptation stage with unlabelled data can improve results even further.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.