Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Space Expansion of Feature Selection for Designing more Accurate Error Predictors (1901.00952v1)

Published 30 Dec 2018 in cs.LG and stat.ML

Abstract: Approximate computing is being considered as a promising design paradigm to overcome the energy and performance challenges in computationally demanding applications. If the case where the accuracy can be configured, the quality level versus energy efficiency or delay also may be traded-off. For this technique to be used, one needs to make sure a satisfactory user experience. This requires employing error predictors to detect unacceptable approximation errors. In this work, we propose a scheduling-aware feature selection method which leverages the intermediate results of the hardware accelerator to improve the prediction accuracy. Additionally, it configures the error predictors according to the energy consumption and latency of the system. The approach enjoys the flexibility of the prediction time for a higher accuracy. The results on various benchmarks demonstrate significant improvements in the prediction accuracy compared to the prior works which used only the accelerator inputs for the prediction.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.