Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Programming Model and Runtime System for Significance-Aware Energy-Efficient Computing (1412.5150v1)

Published 15 Dec 2014 in cs.PL

Abstract: Reducing energy consumption is one of the key challenges in computing technology. One factor that contributes to high energy consumption is that all parts of the program are considered equally significant for the accuracy of the end-result. However, in many cases, parts of computations can be performed in an approximate way, or even dropped, without affecting the quality of the final output to a significant degree. In this paper, we introduce a task-based programming model and runtime system that exploit this observation to trade off the quality of program outputs for increased energy-efficiency. This is done in a structured and flexible way, allowing for easy exploitation of different execution points in the quality/energy space, without code modifications and without adversely affecting application performance. The programmer specifies the significance of tasks, and optionally provides approximations for them. Moreover, she provides hints to the runtime on the percentage of tasks that should be executed accurately in order to reach the target quality of results. The runtime system can apply a number of different policies to decide whether it will execute each individual less-significant task in its accurate form, or in its approximate version. Policies differ in terms of their runtime overhead but also the degree to which they manage to execute tasks according to the programmer's specification. The results from experiments performed on top of an Intel-based multicore/multiprocessor platform show that, depending on the runtime policy used, our system can achieve an energy reduction of up to 83% compared with a fully accurate execution and up to 35% compared with an approximate version employing loop perforation. At the same time, our approach always results in graceful quality degradation.

Citations (37)

Summary

We haven't generated a summary for this paper yet.