Papers
Topics
Authors
Recent
Search
2000 character limit reached

Global existence of the harmonic map heat flow into Lorentzian manifolds

Published 3 Jan 2019 in math.DG | (1901.00901v1)

Abstract: We investigate a parabolic-elliptic system for maps $(u,v)$ from a compact Riemann surface $M$ into a Lorentzian manifold $N\times{\mathbb{R}}$ with a warped product metric. That system turns the harmonic map type equations into a parabolic system, but keeps the $v$-equation as a nonlinear second order constraint along the flow. We prove a global existence result of the parabolic-elliptic system by assuming either some geometric conditions on the target Lorentzian manifold or small energy of the initial maps. The result implies the existence of a Lorentzian harmonic map in a given homotopy class with fixed boundary data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.