Papers
Topics
Authors
Recent
2000 character limit reached

Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback (1901.00301v2)

Published 2 Jan 2019 in cs.LG and stat.ML

Abstract: We investigate the feasibility of learning from a mix of both fully-labeled supervised data and contextual bandit data. We specifically consider settings in which the underlying learning signal may be different between these two data sources. Theoretically, we state and prove no-regret algorithms for learning that is robust to misaligned cost distributions between the two sources. Empirically, we evaluate some of these algorithms on a large selection of datasets, showing that our approach is both feasible and helpful in practice.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com