2000 character limit reached
Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback (1901.00301v2)
Published 2 Jan 2019 in cs.LG and stat.ML
Abstract: We investigate the feasibility of learning from a mix of both fully-labeled supervised data and contextual bandit data. We specifically consider settings in which the underlying learning signal may be different between these two data sources. Theoretically, we state and prove no-regret algorithms for learning that is robust to misaligned cost distributions between the two sources. Empirically, we evaluate some of these algorithms on a large selection of datasets, showing that our approach is both feasible and helpful in practice.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.