On a bounded remainder set for $(t,s)$ sequences I (1901.00135v2)
Abstract: Let ${\bf x}0,{\bf x}_1,...$ be a sequence of points in $[0,1)s$. A subset $S$ of $[0,1)s$ is called a bounded remainder set if there exist two real numbers $a$ and $C$ such that, for every integer $N$, $$ | {\rm card}{n <N \; | \; {\bf x}{n} \in S} - a N| <C . $$ Let $ ({\bf x}n){n \geq 0} $ be an $s-$dimensional Halton-type sequence obtained from a global function field, $b \geq 2$, ${\bf \gamma} =(\gamma_1,...,\gamma_s)$, $\gamma_i \in [0, 1)$, with $b$-adic expansion $\gamma_i= \gamma_{i,1}b{-1}+ \gamma_{i,2}b{-2}+...$, $i=1,...,s$. In this paper, we prove that $[0,\gamma_1) \times ...\times [0,\gamma_s)$ is the bounded remainder set with respect to the sequence $({\bf x}n){n \geq 0}$ if and only if \begin{equation} \nonumber \max_{1 \leq i \leq s} \max { j \geq 1 \; | \; \gamma_{i,j} \neq 0 } < \infty. \end{equation} We also obtain the similar results for a generalized Niederreiter sequences, Xing-Niederreiter sequences and Niederreiter-Xing sequences.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.