Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Spanning 2-Forests and Resistance Distance in 2-Connected Graphs (1901.00053v3)

Published 31 Dec 2018 in math.CO

Abstract: A spanning 2-forest separating vertices $u$ and $v$ of an undirected connected graph is a spanning forest with 2 components such that $u$ and $v$ are in distinct components. Aside from their combinatorial significance, spanning 2-forests have an important application to the calculation of resistance distance or effective resistance. The resistance distance between vertices $u$ and $v$ in a graph representing an electrical circuit with unit resistance on each edge is the number of spanning 2-forests separating $u$ and $v$ divided by the number of spanning trees in the graph. There are also well-known matrix theoretic methods for calculating resistance distance, but the way in which the structure of the underlying graph determines resistance distance via these methods is not well understood. For any connected graph $G$ with a 2-separator separating vertices $u$ and $v$, we show that the number of spanning trees and spanning 2-forests separating $u$ and $v$ can be expressed in terms of these same quantities for the smaller separated graphs, which makes computation significantly more tractable. An important special case is the preservation of the number of spanning 2-forests if $u$ and $v$ are in the same smaller graph. In this paper we demonstrate that this method of calculating resistance distance is more suitable for certain structured families of graphs than the more standard methods. We apply our results to count the number of spanning 2-forests and calculate the resistance distance in a family of Sierpinski triangles and in the family of linear 2-trees with a single bend.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.