Papers
Topics
Authors
Recent
2000 character limit reached

Edge fluctuations for random normal matrix ensembles (1812.11170v3)

Published 28 Dec 2018 in math.PR, math-ph, and math.MP

Abstract: A famous result going back to Eric Kostlan states that the moduli of the eigenvalues of random normal matrices with radial potential are independent yet non identically distributed. This phenomenon is at the heart of the asymptotic analysis of the edge, and leads in particular to the Gumbel fluctuation of the spectral radius when the potential is quadratic. In the present work, we show that a wide variety of laws of fluctuation are possible, beyond the already known cases, including for instance Gumbel and exponential laws at unusual speeds. We study the convergence in law of the spectral radius as well as the limiting point process at the edge. Our work can also be seen as the asymptotic analysis of the edge of two-dimensional determinantal Coulomb gases and the identification of the limiting kernels.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.