Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global existence of solutions to semilinear damped wave equation with slowly decaying inital data in exterior domain (1812.10664v1)

Published 27 Dec 2018 in math.AP

Abstract: In this paper, we discuss the global existence of weak solutions to the semilinear damped wave equation \begin{equation*} \begin{cases} \partial_t2u-\Delta u + \partial_tu = f(u) & \text{in}\ \Omega\times (0,T), \ u=0 & \text{on}\ \partial\Omega\times (0,T), \ u(0)=u_0, \partial_tu(0)=u_1 & \text{in}\ \Omega, \end{cases} \end{equation*} in an exterior domain $\Omega$ in $\mathbb{R}N$ $(N\geq 2)$, where $f:\mathbb{R}\to \mathbb{R}$ is a smooth function behaves like $f(u)\sim |u|p$. From the view point of weighted energy estimates given by Sobajima--Wakasugi \cite{SoWa4}, the existence of global-in-time solutions with small initial data in the sense of $(1+|x|2){\lambda/2}u_0$, $(1+|x|2){\lambda/2}\nabla u_0$, $(1+|x|2){\lambda/2}u_1\in L2(\Omega)$ with $\lambda\in (0,\frac{N}{2})$ is shown under the condition $p\geq 1+\frac{4}{N+2\lambda}$. The sharp lower bound for the lifespan of blowup solutions with small initial data $(\varepsilon u_0,\varepsilon u_1)$ is also given.

Summary

We haven't generated a summary for this paper yet.