Global smooth solutions of 3-D quasilinear wave equations with small initial data (1407.7445v1)
Abstract: In this paper, we are concerned with the 3-D quasilinear wave equation $ \ds\sum_{i,j=0}3g{ij}(u, \p u)\p_{ij}2u$ $=0$ with $(u(0,x), \p_tu(0,x))=(\ve u_0(x), \ve u_1(x))$, where $x_0=t$, $x=(x_1, x_2, x_3)$, $\p=(\p_0, \p_1, ..., \p_3)$, $u_0(x), u_1(x)\in C_0\infty(\Bbb R3)$, $\ve>0$ is small enough, and $g{ij}(u, \p u)=g{ji}(u, \p u)$ are smooth in their arguments. Without loss of generality, one can write $g{ij}(u, \p u)=c{ij}+d{ij}u+\ds\sum_{k=0}3e{ij}_k\p_ku+O(|u|2+|\p u|2)$, where $c{ij}, d{ij}$ and $e{ij}_k$ are some constants, and $\ds\sum_{i,j=0}3c{ij}\p_{ij}2=-\square\equiv -\p_t2+\Delta$. When $\ds\sum_{i,j,k=0}3e{ij}_k\o_k\o_i\o_j\not\equiv 0$ for $\o_0=-1$ and $\o=(\o_1, \o_2, \o_3)\in\Bbb S2$, the authors in [7-8] have shown the blowup of the smooth solution $u$ in finite time as long as $(u_0(x), u_1(x))\not\equiv 0$. In the present paper, when $\ds\sum_{i,j,k=0}3e{ij}_k\o_k\o_i\o_j\equiv 0$, we will prove the global existence of the smooth solution $u$. Therefore, the complete results on the blowup or global existence of the small data solutions have been established for the general 3-D quasilinear wave equations $\ds\sum_{i,j=0}3g{ij}(u, \p u)\p_{ij}2u=0$.