Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the critical exponent and sharp lifespan estimates for semilinear damped wave equations with data from Sobolev spaces of negative order (2108.05667v1)

Published 12 Aug 2021 in math.AP

Abstract: We study semilinear damped wave equations with power nonlinearity $|u|p$ and initial data belonging to Sobolev spaces of negative order $\dot{H}{-\gamma}$. In the present paper, we obtain a new critical exponent $p=p_{\mathrm{crit}}(n,\gamma):=1+\frac{4}{n+2\gamma}$ for some $\gamma\in(0,\frac{n}{2})$ and low dimensions in the framework of Soblev spaces of negative order. Precisely, global (in time) existence of small data Sobolev solutions of lower regularity is proved for $p>p_{\mathrm{crit}}(n,\gamma)$, and blow-up of weak solutions in finite time even for small data if $1<p<p_{\mathrm{crit}}(n,\gamma)$. Furthermore, in order to more accurately describe the blow-up time, we investigate sharp upper bound and lower bound estimates for the lifespan in the subcritical case.

Summary

We haven't generated a summary for this paper yet.