Papers
Topics
Authors
Recent
2000 character limit reached

Cyclic Gerstenhaber-Schack cohomology

Published 26 Dec 2018 in math.KT, math.AT, and math.QA | (1812.10447v2)

Abstract: We show that the diagonal complex computing the Gerstenhaber-Schack cohomology of a bialgebra (that is, the cohomology theory governing bialgebra deformations) can be given the structure of an operad with multiplication if the bialgebra is a (not necessarily finite dimensional) Hopf algebra with invertible antipode; if the antipode is involutive, the operad is even cyclic. Therefore, the Gerstenhaber-Schack cohomology of any such Hopf algebra carries a Gerstenhaber resp. Batalin-Vilkovisky algebra structure; in particular, one obtains a cup product and a cyclic boundary B that generate the Gerstenhaber bracket, and that allows to define cyclic Gerstenhaber-Schack cohomology. In case the Hopf algebra in question is finite dimensional, the Gerstenhaber bracket turns out to be zero in cohomology and hence the interesting structure is not given by this e_2-algebra structure but rather by the resulting e_3-algebra structure, which is expressed in terms of the cup product and B.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.