Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generalization error for decision problems (1812.08696v1)

Published 20 Dec 2018 in stat.ME

Abstract: In this entry we review the generalization error for classification and single-stage decision problems. We distinguish three alternative definitions of the generalization error which have, at times, been conflated in the statistics literature and show that these definitions need not be equivalent even asymptotically. Because the generalization error is a non-smooth functional of the underlying generative model, standard asymptotic approximations, e.g., the bootstrap or normal approximations, cannot guarantee correct frequentist operating characteristics without modification. We provide simple data-adaptive procedures that can be used to construct asymptotically valid confidence sets for the generalization error. We conclude the entry with a discussion of extensions and related problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.