Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

How Much Does Tokenization Affect Neural Machine Translation? (1812.08621v4)

Published 20 Dec 2018 in cs.CL

Abstract: Tokenization or segmentation is a wide concept that covers simple processes such as separating punctuation from words, or more sophisticated processes such as applying morphological knowledge. Neural Machine Translation (NMT) requires a limited-size vocabulary for computational cost and enough examples to estimate word embeddings. Separating punctuation and splitting tokens into words or subwords has proven to be helpful to reduce vocabulary and increase the number of examples of each word, improving the translation quality. Tokenization is more challenging when dealing with languages with no separator between words. In order to assess the impact of the tokenization in the quality of the final translation on NMT, we experimented on five tokenizers over ten language pairs. We reached the conclusion that the tokenization significantly affects the final translation quality and that the best tokenizer differs for different language pairs.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.