Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Finding Predictors for Arbitrary Families of Processes (0912.4883v1)

Published 24 Dec 2009 in cs.LG, cs.AI, cs.IT, math.IT, math.ST, and stat.TH

Abstract: The problem is sequence prediction in the following setting. A sequence $x_1,...,x_n,...$ of discrete-valued observations is generated according to some unknown probabilistic law (measure) $\mu$. After observing each outcome, it is required to give the conditional probabilities of the next observation. The measure $\mu$ belongs to an arbitrary but known class $C$ of stochastic process measures. We are interested in predictors $\rho$ whose conditional probabilities converge (in some sense) to the "true" $\mu$-conditional probabilities if any $\mu\in C$ is chosen to generate the sequence. The contribution of this work is in characterizing the families $C$ for which such predictors exist, and in providing a specific and simple form in which to look for a solution. We show that if any predictor works, then there exists a Bayesian predictor, whose prior is discrete, and which works too. We also find several sufficient and necessary conditions for the existence of a predictor, in terms of topological characterizations of the family $C$, as well as in terms of local behaviour of the measures in $C$, which in some cases lead to procedures for constructing such predictors. It should be emphasized that the framework is completely general: the stochastic processes considered are not required to be i.i.d., stationary, or to belong to any parametric or countable family.

Citations (13)

Summary

We haven't generated a summary for this paper yet.