Asymptotics of Nahm sums at roots of unity (1812.07690v1)
Abstract: We give a formula for the radial asymptotics to all orders of the special $q$-hypergeometric series known as Nahm sums at complex roots of unity. This result is used in~\cite{CGZ} to prove one direction of Nahm's conjecture relating the modularity of Nahm sums to the vanishing of a certain invariant in $K$-theory. The power series occurring in our asymptotic formula are identical to the conjectured asymptotics of the Kashaev invariant of a knot once we convert Neumann-Zagier data into Nahm data, suggesting a deep connection between asymptotics of quantum knot invariants and asymptotics of Nahm sums that will be discussed further in a subsequent publication.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.