Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Gaussian asymptotic limits for the $α$-transformation in the analysis of compositional data (1812.07485v2)

Published 29 Nov 2018 in math.ST, stat.ME, and stat.TH

Abstract: Compositional data consists of vectors of proportions whose components sum to 1. Such vectors lie in the standard simplex, which is a manifold with boundary. One issue that has been rather controversial within the field of compositional data analysis is the choice of metric on the simplex. One popular possibility has been to use the metric implied by logtransforming the data, as proposed by Aitchison [1, 2]; and another popular approach has been to use the standard Euclidean metric inherited from the ambient space. Tsagris et al. [21] proposed a one-parameter family of power transformations, the $\alpha$-transformations, which include both the metric implied by Aitchison's transformation and the Euclidean metric as particular cases. Our underlying philosophy is that, with many datasets, it may make sense to use the data to help us determine a suitable metric. A related possibility is to apply the $\alpha$-transformations to a parametric family of distributions, and then estimate a along with the other parameters. However, as we shall see, when one follows this last approach with the Dirichlet family, some care is needed in a certain limiting case which arises $(\alpha \neq 0)$, as we found out when fitting this model to real and simulated data. Specifically, when the maximum likelihood estimator of a is close to 0, the other parameters tend to be large. The main purpose of the paper is to study this limiting case both theoretically and numerically and to provide insight into these numerical findings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.