Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Inferring the size of the causal universe: features and fusion of causal attribution networks (1812.06038v1)

Published 14 Dec 2018 in cs.SI, cs.CL, cs.CY, and stat.AP

Abstract: Cause-and-effect reasoning, the attribution of effects to causes, is one of the most powerful and unique skills humans possess. Multiple surveys are mapping out causal attributions as networks, but it is unclear how well these efforts can be combined. Further, the total size of the collective causal attribution network held by humans is currently unknown, making it challenging to assess the progress of these surveys. Here we study three causal attribution networks to determine how well they can be combined into a single network. Combining these networks requires dealing with ambiguous nodes, as nodes represent written descriptions of causes and effects and different descriptions may exist for the same concept. We introduce NetFUSES, a method for combining networks with ambiguous nodes. Crucially, treating the different causal attributions networks as independent samples allows us to use their overlap to estimate the total size of the collective causal attribution network. We find that existing surveys capture 5.77% $\pm$ 0.781% of the $\approx$293 000 causes and effects estimated to exist, and 0.198% $\pm$ 0.174% of the $\approx$10 200 000 attributed cause-effect relationships.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube