Papers
Topics
Authors
Recent
2000 character limit reached

Denoising Weak Lensing Mass Maps with Deep Learning (1812.05781v2)

Published 14 Dec 2018 in astro-ph.CO and cs.LG

Abstract: Weak gravitational lensing is a powerful probe of the large-scale cosmic matter distribution. Wide-field galaxy surveys allow us to generate the so-called weak lensing maps, but actual observations suffer from noise due to imperfect measurement of galaxy shape distortions and to the limited number density of the source galaxies. In this paper, we explore a deep-learning approach to reduce the noise. We develop an image-to-image translation method with conditional adversarial networks (CANs), which learn efficient mapping from an input noisy weak lensing map to the underlying noise field. We train the CANs using $30000$ image pairs obtained from $1000$ ray-tracing simulations of weak gravitational lensing. We show that the trained CANs reproduce the true one-point probability distribution function (PDF) of the noiseless lensing map with a bias less than $1\sigma$ on average, where $\sigma$ is the statistical error. We perform a Fisher analysis to make forecast for cosmological parameter inference with the one-point lensing PDF. By our denoising method using CANs, the first derivative of the PDF with respect to the cosmic mean matter density and the amplitude of the primordial curvature perturbations becomes larger by $\sim50\%$. This allows us to improve the cosmological constraints by $\sim30-40\%$ with using observational data from ongoing and upcoming galaxy imaging surveys.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.