Papers
Topics
Authors
Recent
2000 character limit reached

Aerial navigation in obstructed environments with embedded nonlinear model predictive control (1812.04755v1)

Published 12 Dec 2018 in math.OC

Abstract: We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAV) using nonlinear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potentially non-convex, geometry. The NMPC problem is solved using PANOC: a fast numerical optimization method which is completely matrix-free, is not sensitive to ill conditioning, involves only simple algebraic operations and is suitable for embedded NMPC. A C89 implementation of PANOC solves the NMPC problem at a rate of 20Hz on board a lab-scale MAV. The MAV performs smooth maneuvers moving around an obstacle. For increased autonomy, we propose a simple method to compensate for the reduction of thrust over time, which comes from the depletion of the MAV's battery, by estimating the thrust constant.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.