Papers
Topics
Authors
Recent
2000 character limit reached

Slice theorem and orbit type stratification in infinite dimensions (1812.04698v2)

Published 11 Dec 2018 in math.DG, math-ph, and math.MP

Abstract: We establish a general slice theorem for the action of a locally convex Lie group on a locally convex manifold, which generalizes the classical slice theorem of Palais to infinite dimensions. We discuss two important settings under which the assumptions of this theorem are fulfilled. First, using Gl\"ockner's inverse function theorem, we show that the linear action of a compact Lie group on a Fr\'echet space admits a slice. Second, using the Nash--Moser theorem, we establish a slice theorem for the tame action of a tame Fr\'echet Lie group on a tame Fr\'echet manifold. For this purpose, we develop the concept of a graded Riemannian metric, which allows the construction of a path-length metric compatible with the manifold topology and of a local addition. Finally, generalizing a classical result in finite dimensions, we prove that the existence of a slice implies that the decomposition of the manifold into orbit types of the group action is a stratification.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.