Semi-supervised dual graph regularized dictionary learning
Abstract: In this paper, we propose a semi-supervised dictionary learning method that uses both the information in labelled and unlabelled data and jointly trains a linear classifier embedded on the sparse codes. The manifold structure of the data in the sparse code space is preserved using the same approach as the Locally Linear Embedding method (LLE). This enables one to enforce the predictive power of the unlabelled data sparse codes. We show that our approach provides significant improvements over other methods. The results can be further improved by training a simple nonlinear classifier as SVM on the sparse codes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.