Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Periods of Complete Intersection Algebraic Cycles (1812.03964v5)

Published 10 Dec 2018 in math.AG

Abstract: For every even number $n$, and every $n$-dimensional smooth hypersurface of $\mathbb{P}{n+1}$ of degree $d$, we compute the periods of all its $\frac{n}{2}$-dimensional complete intersection algebraic cycles. Furthermore, we determine the image of the given algebraic cycle under the cycle class map inside the De Rham cohomology group of the corresponding hypersurface in terms of its Griffiths basis and the polarization. As an application, we use this information to address variational Hodge conjecture for a non complete intersection algebraic cycle. We prove that the locus of general hypersurfaces containing two linear cycles whose intersection is of dimension less than $\frac{n}{2}-\frac{d}{d-2}$, corresponds to the Hodge locus of any integral combination of such linear cycles.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.