Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An extended trivariate vine copula mixed model for meta-analysis of diagnostic studies in the presence of non-evaluable outcomes (1812.03685v3)

Published 10 Dec 2018 in stat.AP

Abstract: A paper proposed an extended trivariate generalized linear mixed model (TGLMM) for synthesis of diagnostic test accuracy studies in the presence of non-evaluable index test results. Inspired by the aforementioned model we propose an extended trivariate vine copula mixed model that includes the TGLMM as special case, but can also operate on the original scale of sensitivity, specificity, and disease prevalence. The performance of the proposed vine copula mixed model is examined by extensive simulation studies in comparison with the TGLMM. Simulation studies showed that the TGLMM overestimates the meta-analytic estimates of sensitivity, specificity, and prevalence when the univariate random effects are misspecified. The vine copula mixed model gives nearly unbiased estimates of test accuracy indices and disease prevalence. Our general methodology is illustrated by meta-analysing coronary CT angiography studies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.