Papers
Topics
Authors
Recent
Search
2000 character limit reached

Steerable Wavelet Scattering for 3D Atomic Systems with Application to Li-Si Energy Prediction

Published 21 Nov 2018 in physics.comp-ph, cs.LG, physics.chem-ph, and stat.ML | (1812.02320v2)

Abstract: A general machine learning architecture is introduced that uses wavelet scattering coefficients of an inputted three dimensional signal as features. Solid harmonic wavelet scattering transforms of three dimensional signals were previously introduced in a machine learning framework for the regression of properties of small organic molecules. Here this approach is extended for general steerable wavelets which are equivariant to translations and rotations, resulting in a sparse model of the target function. The scattering coefficients inherit from the wavelets invariance to translations and rotations. As an illustration of this approach a linear regression model is learned for the formation energy of amorphous lithium-silicon material states trained over a database generated using plane-wave Density Functional Theory methods. State-of-the-art results are produced as compared to other machine learning approaches over similarly generated databases.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.