2000 character limit reached
Energy Stability and Convergence of SAV Block-centered Finite Difference Method for Gradient Flows (1812.01793v1)
Published 5 Dec 2018 in math.NA
Abstract: We present in this paper construction and analysis of a block-centered finite difference method for the spatial discretization of the scalar auxiliary variable Crank-Nicolson scheme (SAV/CN-BCFD) for gradient flows, and show rigorously that scheme is second-order in both time and space in various discrete norms. When equipped with an adaptive time strategy, the SAV/CN-BCFD scheme is accurate and extremely efficient. Numerical experiments on typical Allen-Cahn and Cahn-Hilliard equations are presented to verify our theoretical results and to show the robustness and accuracy of the SAV/CN-BCFD scheme.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.