An efficient reduction strategy for signature-based algorithms to compute Groebner basis
Abstract: This paper introduces a strategy for signature-based algorithms to compute Groebner basis. The signature-based algorithms generate S-pairs instead of S-polynomials, and use s-reduction instead of the usual reduction used in the Buchberger algorithm. There are two strategies for s-reduction: one is the only-top reduction strategy which is the way that only leading monomials are s-reduced. The other is the full reduction strategy which is the way that all monomials are s-reduced. A new strategy, which we call selective-full strategy, for s-reduction of S-pairs is introduced in this paper. In the experiment, this strategy is efficient for computing the reduced Groebner basis. For computing a signature Groebner basis, it is the most efficient or not the worst of the three strategies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.