Papers
Topics
Authors
Recent
2000 character limit reached

Sym-parameterized Dynamic Inference for Mixed-Domain Image Translation (1811.12362v3)

Published 29 Nov 2018 in cs.CV

Abstract: Recent advances in image-to-image translation have led to some ways to generate multiple domain images through a single network. However, there is still a limit in creating an image of a target domain without a dataset on it. We propose a method that expands the concept of `multi-domain' from data to the loss area and learns the combined characteristics of each domain to dynamically infer translations of images in mixed domains. First, we introduce Sym-parameter and its learning method for variously mixed losses while synchronizing them with input conditions. Then, we propose Sym-parameterized Generative Network (SGN) which is empirically confirmed of learning mixed characteristics of various data and losses, and translating images to any mixed-domain without ground truths, such as 30% Van Gogh and 20% Monet and 40% snowy.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.