Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-entailed subsequences as a challenge for natural language inference (1811.12112v2)

Published 29 Nov 2018 in cs.CL

Abstract: Neural network models have shown great success at natural language inference (NLI), the task of determining whether a premise entails a hypothesis. However, recent studies suggest that these models may rely on fallible heuristics rather than deep language understanding. We introduce a challenge set to test whether NLI systems adopt one such heuristic: assuming that a sentence entails all of its subsequences, such as assuming that "Alice believes Mary is lying" entails "Alice believes Mary." We evaluate several competitive NLI models on this challenge set and find strong evidence that they do rely on the subsequence heuristic.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.