Papers
Topics
Authors
Recent
2000 character limit reached

Cartoon-to-real: An Approach to Translate Cartoon to Realistic Images using GAN

Published 28 Nov 2018 in cs.CV | (1811.11796v3)

Abstract: We propose a method to translate cartoon images to real world images using Generative Aderserial Network (GAN). Existing GAN-based image-to-image translation methods which are trained on paired datasets are impractical as the data is difficult to accumulate. Therefore, in this paper we exploit the Cycle-Consistent Adversarial Networks (CycleGAN) method for images translation which needs an unpaired dataset. By applying CycleGAN we show that our model is able to generate meaningful real world images from cartoon images. However, we implement another state of the art technique $-$ Deep Analogy $-$ to compare the performance of our approach.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.