Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Track Reconstruction in the ALICE TPC using GPUs for LHC Run 3 (1811.11481v1)

Published 28 Nov 2018 in physics.ins-det

Abstract: In LHC Run 3, ALICE will increase the data taking rate significantly to continuous readout of 50 kHz minimum bias Pb-Pb collisions. The reconstruction strategy of the online offline computing upgrade foresees a first synchronous online reconstruction stage during data taking enabling detector calibration, and a posterior calibrated asynchronous reconstruction stage. We present a tracking algorithm for the Time Projection Chamber (TPC), the main tracking detector of ALICE. The reconstruction must yield results comparable to current offline reconstruction and meet the time constraints like in the current High Level Trigger (HLT), processing 50 times as many collisions per second as today. It is derived from the current online tracking in the HLT, which is based on a Cellular automaton and the Kalman filter, and we integrate missing features from offline tracking for improved resolution. The continuous TPC readout and overlapping collisions pose new challenges: conversion to spatial coordinates and the application of time- and location dependent calibration must happen in between of track seeding and track fitting while the TPC occupancy increases five-fold. The huge data volume requires a data reduction factor of 20, which imposes additional requirements: the momentum range must be extended to identify low-pt looping tracks and a special refit in uncalibrated coordinates improves the track model entropy encoding. Our TPC track finding leverages the potential of hardware accelerators via the OpenCL and CUDA APIs in a shared source code for CPUs, GPUs, and both reconstruction stages. Porting more reconstruction steps like the remainder of the TPC reconstruction and tracking for other detectors will shift the computing balance from traditional processors to GPUs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.