Papers
Topics
Authors
Recent
2000 character limit reached

Modeling the respiratory Central Pattern Generator with resonate-and-fire Izhikevich-Neurons (1811.11388v1)

Published 28 Nov 2018 in q-bio.NC and q-bio.TO

Abstract: Computational models of the respiratory central pattern generator (rCPG) are usually based on biologically-plausible Hodgkin Huxley neuron models. Such models require numerous parameters and thus are prone to overfitting. The HH approach is motivated by the assumption that the biophysical properties of neurons determine the network dynamics. Here, we implement the rCPG using simpler Izhikevich resonate-and-fire neurons. Our rCPG model generates a 3-phase respiratory motor pattern based on established connectivities and can reproduce previous experimental and theoretical observations. Further, we demonstrate the flexibility of the model by testing whether intrinsic bursting properties are necessary for rhythmogenesis. Our simulations demonstrate that replacing predicted mandatory bursting properties of pre-inspiratory neurons with spike adapting properties yields a model that generates comparable respiratory activity patterns. The latter supports our view that the importance of the exact modeling parameters of specific respiratory neurons is overestimated.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.