Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Deep Learning Strategy for Vehicular Floating Content Management (1811.11249v1)

Published 24 Oct 2018 in cs.NI, cs.LG, and stat.ML

Abstract: Floating Content (FC) is a communication paradigm for the local dissemination of contextualized information through D2D connectivity, in a way which minimizes the use of resources while achieving some specified performance target. Existing approaches to FC dimensioning are based on unrealistic system assumptions that make them, highly inaccurate and overly conservative when applied in realistic settings. In this paper, we present a first step towards the development of a cognitive approach to efficient dynamic management of FC. We propose a deep learning strategy for FC dimensioning, which exploits a Convolutional Neural Network(CNN) to efficiently modulate over time the resources employed by FC in a QoS-aware manner. Numerical evaluations show that our approach achieves a maximum rejection rate of3%, and resource savings of 37.5% with respect to the benchmark strategy

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.