Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 56 tok/s
Gemini 2.5 Flash 158 tok/s Pro
Kimi K2 198 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

How to improve the interpretability of kernel learning (1811.10469v2)

Published 21 Nov 2018 in cs.LG and stat.ML

Abstract: In recent years, machine learning researchers have focused on methods to construct flexible and interpretable prediction models. However, an interpretability evaluation, a relationship between generalization performance and an interpretability of the model and a method for improving the interpretability have to be considered. In this paper, a quantitative index of the interpretability is proposed and its rationality is proved, and equilibrium problem between the interpretability and the generalization performance is analyzed. Probability upper bound of the sum of the two performances is analyzed. For traditional supervised kernel machine learning problem, a universal learning framework is put forward to solve the equilibrium problem between the two performances. The condition for global optimal solution based on the framework is deduced. The learning framework is applied to the least-squares support vector machine and is evaluated by some experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.