Papers
Topics
Authors
Recent
Search
2000 character limit reached

ParsRec: A Novel Meta-Learning Approach to Recommending Bibliographic Reference Parsers

Published 26 Nov 2018 in cs.IR, cs.CL, cs.DL, and cs.LG | (1811.10369v1)

Abstract: Bibliographic reference parsers extract machine-readable metadata such as author names, title, journal, and year from bibliographic reference strings. To extract the metadata, the parsers apply heuristics or machine learning. However, no reference parser, and no algorithm, consistently gives the best results in every scenario. For instance, one tool may be best in extracting titles in ACM citation style, but only third best when APA is used. Another tool may be best in extracting English author names, while another one is best for noisy data (i.e. inconsistent citation styles). In this paper, which is an extended version of our recent RecSys poster, we address the problem of reference parsing from a recommender-systems and meta-learning perspective. We propose ParsRec, a meta-learning based recommender-system that recommends the potentially most effective parser for a given reference string. ParsRec recommends one out of 10 open-source parsers: Anystyle-Parser, Biblio, CERMINE, Citation, Citation-Parser, GROBID, ParsCit, PDFSSA4MET, Reference Tagger, and Science Parse. We evaluate ParsRec on 105k references from chemistry. We propose two approaches to meta-learning recommendations. The first approach learns the best parser for an entire reference string. The second approach learns the best parser for each metadata type in a reference string. The second approach achieved a 2.6% increase in F1 (0.909 vs. 0.886) over the best single parser (GROBID), reducing the false positive rate by 20.2% (0.075 vs. 0.094), and the false negative rate by 18.9% (0.107 vs. 0.132).

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.