Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hedging and Pricing European-type, Early-Exercise and Discrete Barrier Options using Algorithm for the Convolution of Legendre Series (1811.09257v3)

Published 22 Nov 2018 in q-fin.CP and math.NA

Abstract: This paper applies an algorithm for the convolution of compactly supported Legendre series (the CONLeg method) (cf. Hale and Townsend 2014a), to pricing/hedging European-type, early-exercise and discrete-monitored barrier options under a Levy process. The paper employs Chebfun (cf. Trefethen et al. 2014) in computational finance and provides a quadrature-free approach by applying the Chebyshev series in financial modelling. A significant advantage of using the CONLeg method is to formulate option pricing and option Greek curves rather than individual prices/values. Moreover, the CONLeg method can yield high accuracy in option pricing and hedging when the risk-free smooth probability density function (PDF) is smooth/non-smooth. Finally, we show that our method can accurately price/hedge options deep in/out of the money and with very long/short maturities. Compared with existing techniques, the CONLeg method performs either favourably or comparably in numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.