Spin versions of the complex trigonometric Ruijsenaars-Schneider model from cyclic quivers (1811.08717v2)
Abstract: We study multiplicative quiver varieties associated to specific extensions of cyclic quivers with $m\geq 2$ vertices. Their global Poisson structure is characterised by quasi-Hamiltonian algebras related to these quivers, which were studied by Van den Bergh for an arbitrary quiver. We show that the spaces are generically isomorphic to the case $m=1$ corresponding to an extended Jordan quiver. This provides a set of local coordinates, which we use to interpret integrable systems as spin variants of the trigonometric Ruijsenaars-Schneider system. This generalises to new spin cases recent works on classical integrable systems in the Ruijsenaars-Schneider family.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.