Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Small increases in agent-based model complexity can result in large increases in required calibration data (1811.08524v3)

Published 20 Nov 2018 in stat.AP

Abstract: Agent-based models (ABMs) are widely used to model coupled natural-human systems. Descriptive models require careful calibration with observed data. However, ABMs are often not calibrated in a statistical sense. Here we examine the impact of data record structure on the calibration of an ABM for housing abandonment in the presence of flood risk. Using a perfect model experiment, we examine the impact of data record structures on (i) model calibration and (ii) the ability to distinguish a model with inter-agent interactions from one without. We show how limited data sets may not constrain a model with just four parameters. This indicates that many ABMs may require informative prior distributions to be descriptive. We also illustrate how spatially-aggregated data can be insufficient to identify the correct model structure. This emphasizes the need for utilizing independent lines of evidence to select sound and informative priors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.