Small increases in agent-based model complexity can result in large increases in required calibration data (1811.08524v3)
Abstract: Agent-based models (ABMs) are widely used to model coupled natural-human systems. Descriptive models require careful calibration with observed data. However, ABMs are often not calibrated in a statistical sense. Here we examine the impact of data record structure on the calibration of an ABM for housing abandonment in the presence of flood risk. Using a perfect model experiment, we examine the impact of data record structures on (i) model calibration and (ii) the ability to distinguish a model with inter-agent interactions from one without. We show how limited data sets may not constrain a model with just four parameters. This indicates that many ABMs may require informative prior distributions to be descriptive. We also illustrate how spatially-aggregated data can be insufficient to identify the correct model structure. This emphasizes the need for utilizing independent lines of evidence to select sound and informative priors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.