Papers
Topics
Authors
Recent
2000 character limit reached

Double Refinement Network for Efficient Indoor Monocular Depth Estimation (1811.08466v2)

Published 20 Nov 2018 in cs.CV

Abstract: Monocular depth estimation is the task of obtaining a measure of distance for each pixel using a single image. It is an important problem in computer vision and is usually solved using neural networks. Though recent works in this area have shown significant improvement in accuracy, the state-of-the-art methods tend to require massive amounts of memory and time to process an image. The main purpose of this work is to improve the performance of the latest solutions with no decrease in accuracy. To this end, we introduce the Double Refinement Network architecture. The proposed method achieves state-of-the-art results on the standard benchmark RGB-D dataset NYU Depth v2, while its frames per second rate is significantly higher (up to 18 times speedup per image at batch size 1) and the RAM usage per image is lower.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.