Papers
Topics
Authors
Recent
2000 character limit reached

On the stability of solitary water waves with a point vortex (1811.08024v2)

Published 19 Nov 2018 in math.AP

Abstract: This paper investigates the stability of traveling wave solutions to the free boundary Euler equations with a submerged point vortex. We prove that sufficiently small-amplitude waves with small enough vortex strength are conditionally orbitally stable. In the process of obtaining this result, we develop a quite general stability/instability theory for bound state solutions of a large class of infinite-dimensional Hamiltonian systems in the presence of symmetry. This is in the spirit of the seminal work of Grillakis, Shatah, and Strauss, but with hypotheses that are relaxed in a number of ways necessary for the point vortex system, and for other hydrodynamical applications more broadly. In particular, we are able to allow the Poisson map to have merely dense range, as opposed to being surjective, and to be state-dependent. As a second application of the general theory, we consider a family of nonlinear dispersive PDEs that includes the generalized KdV and Benjamin--Ono equations. The stability/instability of solitary waves for these systems has been studied extensively, notably by Bona, Souganidis, and Strauss, who used a modification of the GSS method. We provide a new, more direct proof of these results that follows as a straightforward consequence of our abstract theory. At the same time, we extend them to fractional order dispersive equations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.