Papers
Topics
Authors
Recent
Search
2000 character limit reached

Discrete-time port-Hamiltonian systems: A definition based on symplectic integration

Published 19 Nov 2018 in math.DS and cs.SY | (1811.07852v1)

Abstract: We introduce a new definition of discrete-time port-Hamiltonian systems (PHS), which results from structure-preserving discretization of explicit PHS in time. We discretize the underlying continuous-time Dirac structure with the collocation method and add discrete-time dynamics by the use of symplectic numerical integration schemes. The conservation of a discrete-time energy balance - expressed in terms of the discrete-time Dirac structure - extends the notion of symplecticity of geometric integration schemes to open systems. We discuss the energy approximation errors in the context of the presented definition and show that their order is consistent with the order of the numerical integration scheme. Implicit Gauss-Legendre methods and Lobatto IIIA/IIIB pairs for partitioned systems are examples for integration schemes that are covered by our definition. The statements on the numerical energy errors are illustrated by elementary numerical experiments.

Citations (63)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.