Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Multilevel Monte Carlo estimation of expected information gains (1811.07546v5)

Published 19 Nov 2018 in stat.CO, cs.NA, math.NA, and stat.ME

Abstract: The expected information gain is an important quality criterion of Bayesian experimental designs, which measures how much the information entropy about uncertain quantity of interest $\theta$ is reduced on average by collecting relevant data $Y$. However, estimating the expected information gain has been considered computationally challenging since it is defined as a nested expectation with an outer expectation with respect to $Y$ and an inner expectation with respect to $\theta$. In fact, the standard, nested Monte Carlo method requires a total computational cost of $O(\varepsilon{-3})$ to achieve a root-mean-square accuracy of $\varepsilon$. In this paper we develop an efficient algorithm to estimate the expected information gain by applying a multilevel Monte Carlo (MLMC) method. To be precise, we introduce an antithetic MLMC estimator for the expected information gain and provide a sufficient condition on the data model under which the antithetic property of the MLMC estimator is well exploited such that optimal complexity of $O(\varepsilon{-2})$ is achieved. Furthermore, we discuss how to incorporate importance sampling techniques within the MLMC estimator to avoid arithmetic underflow. Numerical experiments show the considerable computational cost savings compared to the nested Monte Carlo method for a simple test case and a more realistic pharmacokinetic model.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube