Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Optimization on the symplectic group (1811.07345v2)

Published 18 Nov 2018 in math.OC and math.DG

Abstract: We regard the real symplectic group $Sp(2n,\mathbb{R})$ as a constraint submanifold of the $2n\times 2n$ real matrices $\mathcal{M}_{2n}(\mathbb{R})$ endowed with the Euclidean (Frobenius) metric, respectively as a submanifold of the general linear group $Gl(2n,\mathbb{R})$ endowed with the (left) invariant metric. For a cost function that defines an optimization problem on the real symplectic group we give a necessary and sufficient condition for critical points and we apply this condition to the particular case of a least square cost function. In order to characterize the critical points we give a formula for the Hessian of a cost function defined on the real symplectic group, with respect to both considered metrics. For a generalized Brockett cost function we present a necessary condition and a sufficient condition for local minimum. We construct a retraction map that allows us to detail the steepest descent and embedded Newton algorithms for solving an optimization problem on the real symplectic group.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.