A New Approach to the Automorphism Group of a Platonic Surface (1811.07052v2)
Abstract: We borrow a classical construction from the study of rational billiards in dynamical systems known as the "unfolding construction" and show that it can be used to study the automorphism group of a Platonic surface. More precisely, the monodromy group, or deck group in this case, associated to the cover of a regular polygon or double polygon by the unfolded Platonic surface yields a normal subgroup of the rotation group of the Platonic surface. The quotient of this rotation group by the normal subgroup is always a cyclic group, where explicit bounds on the order of the cyclic group can be given entirely in terms of the Schl\"afli symbol of the Platonic surface. As a consequence, we provide a new derivation of the rotation groups of the dodecahedron and the Bolza surface.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.