Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Test sequences and formal solutions over hyperbolic groups (1811.06430v1)

Published 15 Nov 2018 in math.GR and math.LO

Abstract: In 2006 Z. Sela and independently O. Kharlampovich and A. Myasnikov gave a solution to the Tarski problems by showing that two non-abelian free groups have the same elementary theory. Subsequently Z. Sela generalized the techniques used in his proof of the Tarski conjecture to classify all finitely generated groups elementary equivalent to a given torsion-free hyperbolic group. One important step in his analysis of the elementary theory of free and torsion-free hyperbolic groups is the Generalized Merzlyakov's Theorem. In our work we show that given a hyperbolic group $\Gamma$ and $\Gamma$-limit group $L$, there exists a larger group $Comp(L)$, namely its completion, into which $L$ embeds, and a sequence of points $(\lambda_n)$ in the variety $Hom(Comp(L),\Gamma)$ from which one can recover the structure of the group $Comp(L)$. Using such a test sequence $(\lambda_n)$ we are finally able to prove a version of the Generalized Merzlyakov's Theorem over all hyperbolic groups (possibly with torsion).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.