Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Hörmander's theorem for semilinear SPDEs (1811.06339v2)

Published 15 Nov 2018 in math.PR and math.AP

Abstract: We consider a broad class of semilinear SPDEs with multiplicative noise driven by a finite-dimensional Wiener process. We show that, provided that an infinite-dimensional analogue of H\"ormander's bracket condition holds, the Malliavin matrix of the solution is an operator with dense range. In particular, we show that the laws of finite-dimensional projections of such solutions admit smooth densities with respect to Lebesgue measure. The main idea is to develop a robust pathwise solution theory for such SPDEs using rough paths theory, which then allows us to use a pathwise version of Norris's lemma to work directly on the Malliavin matrix, instead of the "reduced Malliavin matrix" which is not available in this context. On our way of proving this result, we develop some new tools for the theory of rough paths like a rough Fubini theorem and a deterministic mild It^o formula for rough PDEs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube